Semi-supervised classification algorithm of hyperspectral image based on DL1 graph and KNN superposition graph
نویسندگان
چکیده
منابع مشابه
Graph-based multimodal semi-supervised image classification
We investigate an image classification task where training images come along with tags, but only a subset being labeled, and the goal is to predict the class label of test images without tags. This task is important for image search engine on photo sharing websites. In previous studies, it is handled by first training a multiple kernel learning classifier using both image content and tags to sc...
متن کاملSemi-Supervised Classification Based on Mixture Graph
Graph-based semi-supervised classification heavily depends on a well-structured graph. In this paper, we investigate a mixture graph and propose a method called semi-supervised classification based on mixture graph (SSCMG). SSCMG first constructs multiple k nearest neighborhood (kNN) graphs in different random subspaces of the samples. Then, it combines these graphs into a mixture graph and inc...
متن کاملDissimilarity in Graph-Based Semi-Supervised Classification
Label dissimilarity specifies that a pair of examples probably have different class labels. We present a semi-supervised classification algorithm that learns from dissimilarity and similarity information on labeled and unlabeled data. Our approach uses a novel graphbased encoding of dissimilarity that results in a convex problem, and can handle both binary and multiclass classification. Experim...
متن کاملHyperspectral Image Classification Based on Semi-Supervised Rotation Forest
Ensemble learning is widely used to combine varieties of weak learners in order to generate a relatively stronger learner by reducing either the bias or the variance of the individual learners. Rotation forest (RoF), combining feature extraction and classifier ensembles, has been successfully applied to hyperspectral (HS) image classification by promoting the diversity of base classifiers since...
متن کاملGraph-Based Semi-Supervised Learning
While labeled data is expensive to prepare, ever increasing amounts of unlabeled data is becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabeled data, have been developed. In a separate line of work, researchers have started to realize that graphs provide a natural way to represent data in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SCIENTIA SINICA Informationis
سال: 2017
ISSN: 1674-7267
DOI: 10.1360/n112016-00265